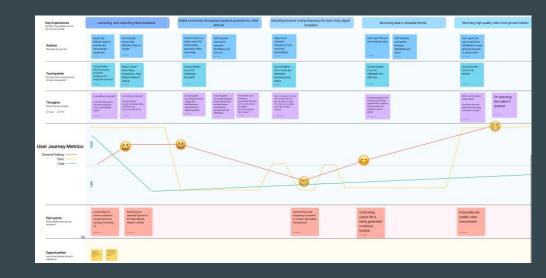
Contextualization

$\bullet \bullet \bullet$

Sddec24-01

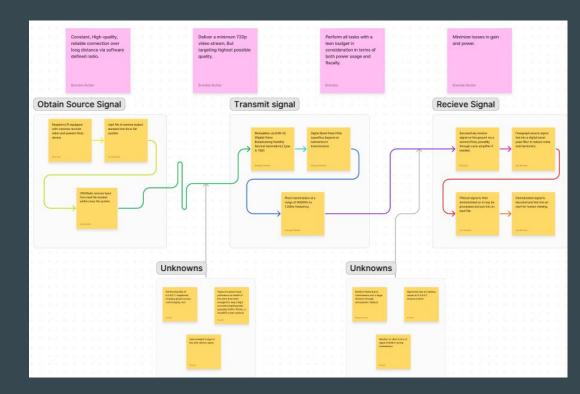
Faculty Advisor: Matthew Nelson


Project Overview:

- Create a project with a balloon that flies high up to collect data and record videos from near space.
- Work together with H.A.B.E.T. and other groups.
- Our aim is to get clear videos from up to 30,000 meters using software defined radios.
- We need to keep an eye on power use and how heavy the payload is.

Journey Map

 The journey map provided valuable insights into the user experience and helped us identify key touchpoints and pain points throughout the payload deployment process.


Pros/Cons Table

This analysis allowed lacksquareus to systematically evaluate the advantages and disadvantages of different design choices, aiding in informed decision-making.

	GNU radio (only software)	Simulink(only software)	Fully Analog Radio (Only Hardware)	Hybrid Analog and SDR(GNU Radio) (Our Solution)
Pros	-Accessible and well-supported. Others will be able to use it and make adjustments in the future. -Easy to make changes in the system via software	-Many students are already familiar with the interface and blocks -adjustments easily made to processing	- Cheap and widely available at most hardware suppliers -tested and well-defined by amateurs and professionals alike due to a long history -due to defined parameters, there is no guessing on functionality	-combines the robustness of analog with the flexibility of SDR. -Will allow us to make changes to processing while also using hardware filtration and amplification if necessary.
Cons	-requires background knowledge that most will need to learn. -adds complexity to the system	-unreliable license access from the university -adds complexity to the system	-little to no variability due to hardware limitations vs software. -Requires knowledge of hardware specifications (small electronics, controls, PCB design, power systems, etc)	-adds some complexity to the system -forces team to divide attention between different areas of focus

Technical Complexity Analysis

 By assessing the technical complexities associated with each subsystem and component, we gained a deeper understanding of the challenges and considerations involved in implementation.

Human:

- Current solution addresses user needs sufficiently.
- Improvements could involve enhancing user interfaces and providing clearer operational instructions.
- Incorporating user feedback and refining design accordingly would ensure better alignment with user expectations.
- Offering customizable features would enhance solution versatility and usability.

Economic:

- Our solution improves upon existing solutions by offering flexibility, modularity, and functionality.
- Drawbacks may include initial investment required for development and testing.
- To mitigate expenses, we could explore collaboration or sponsorship opportunities.
- Continued refinement and optimization could further enhance cost-effectiveness and performance.

Technical:

- Internal complexity arises from the integration of multiple subsystems, such as the Pluto Board, Raspberry Pi, and SDR, each with specialized functions.
- External complexity stems from advanced signal processing techniques and radio communication protocols.
- This showcases our team's expertise in hardware and software integration, signal processing, and radio communication systems.
- Our ability to navigate these complexities effectively demonstrates our developed expertise.

Conclusion:

- Journey maps, pros/cons table, and technical complexity analysis provided valuable insights and guidance throughout the design process.
- Our current solution adequately addresses user needs, with potential improvements in user interface and operational clarity.
- Our solution improves upon existing solutions by offering flexibility, modularity, and functionality, albeit with initial investment considerations.
- The internal complexity of our design is justified by the integration of multiple subsystems, showcasing our team's expertise in hardware and software integration.
- External complexity arises from advanced signal processing and communication protocols, demonstrating our proficiency in navigating complex engineering challenges.