Heimdall

sddec24-01

Client: H.A.B.E.T.

Advisor: Matthew Nelson

Team Members & Roles

Brandon Beaver - Project Manager

Alec Sutton - Design and Power Team Lead

Branden Buhler - Communications and Program Team Lead

Cullen White - Power Systems and Logistics Manager

George Cleaver - Communications and Controls Advisor

Lex Somers - Programming and Software Advisor

Agenda

- 1. Client Info/Background
- 2. Project Information
- 3. Conceptual overview
- 4. Resources
- 5. Detailed design

- 6. System/Module testing
- 7. Project Logistics
- 8. Project Status
- 9. Looking forward
- 10. Individual contributions

Client Info

H.A.B.E.T.

- High-Altitude Balloon Experiments in Technology
 - Established in 1993 by CITS by Ralph Wallio
 - Previously used amature radio as basis for flights
 - Absorbed by ISU in 1995
 - Funded by the ISGC, a NASA cooperative
- Iowa State student lead team through M2I
 - Client/Advisor: Director Matthew Nelson
- Perform experiments using custom spacecraft design specs based on project/client needs
- Goals: capturing atmospheric, telemetry, and visual data, stored locally and transmitted to ground.
 - Video and telemetry data transmission issues result in change needed in current methods

Problem Statement

- Problem:
 - H.A.B.E.T. currently transmits with a 5.8 GHz signal, but often experiences data loss due to excessive noise and signal disconnection. Additionally, H.A.B.E.T. is prone to video loss due to craft recovery issues.

- Proposed Solution:
 - Transmit using software-defined radio (SDR) at a target frequency of 1.243
 GHz to maintain a link at low-space altitude with less noise interference.
 Heimdall aims to maintain a video link so maximum footage is obtained.

Project Schedule

Heimdall		JAN		FEB		MAR		APR		MAY	C		AUG			SEP		ОСТ			NOV		DEC	
		16 23	30 6	5 13 2	0 27	5 - 19	26 2	9 16 23 3	0 7		Summer		13 2	27	3 10	17 24	1 1	8 15	22 2	9 5	12 1	.9 -	3 1	- 01
TASK	Goal Date																							
Phase 1: Background Research & Setup																								
Objectives & Requirements Overview	2/6/2024																							
SDR & DVB-S2 Standards Research	2/20/2024																							
GNURadio & Raspberry Pi Research	3/19/2024																							
Link Budget & Battery Research	4/30/2024																							
Phase 2: Design & Prototype																								
Design High-Level SDR Design & Flowgraphs	4/9/2024																							
Test Flowgraphs & Pluto/HackRF on H.A.B.E.T. Launch	8/20/2024																							
Design, Build, & Test Monopole / Loop Antenna	9/3/2024																							
Link Budget & Battery / Ampmlifiers Research	9/3/2024																							
Phase 3: Implementation & Optimization																								
Revise Flowgraph Design with Optimizations	8/27/2024																							
Revise & Test Loop Atenna Design	11/19/2024																							
Complete Link Budget & Integrate Low Noise Amplifier	11/19/2024																							
Test SDR & Hardware in Lab & on H.A.B.E.T. Launch	11/5/2024																							
Phase 4: Documentation & Presentation																								
Documentation	12/3/2024																							
Presentation	12/10/2024																							
	11																							

IEEE Standard Compliance

- IEEE 802.11 b/g/n
 - Standard for WiFi that operates on the 2.4 GHz band.
- IEEE C95.7 2022
 - Standard for RF safety programs for various safety applications when using radiation at RF frequencies from 0 to 300 GHz.
- IEEE 287
 - Standard for using and applying RF coaxial cable connectors and best practices for inclusion.
- IEEE 287.3-2021
 - Standard for involving recommended usages for connectors, coaxial cable types, and recommendations for best performance.

- FCC Part 97 §97.113 "Prohibited transmissions"
 - Restrictions for amateur radio station transmissions
- FAA Section 6 "Unmanned Free Balloons" §9-6-1 "Application"
 - Weight requirements for HAB Balloons

Functional Requirements

• Receive video data transmission.

• Transmit at carrier frequency on the 1.2 GHz frequency band to remain at amatuer radio frequency.

• Maintain connection at rated balloon altitude (30km).

Non-Functional Requirements

• Heimdall components must fit within H.A.B.E.T. payload dimension and weight requirements.

• High quality documentation to ensure ease of use for H.A.B.E.T. in the future.

• Provide a free/open-source SDR product that H.A.B.E.T. can use going forward.

Deliverables/Milestones:

- Determine ideal modulation and encoding scheme to be tested in H.A.B.E.T.'s eclipse launch
- Develop preliminary transmission design, including:
 - Hardware:
 - Controller
 - Camera
 - Software-Defined Radio (SDR) Device [PlutoSDR, HackRF, etc.]
 - Sourced/Built antenna specified to the selected carrier frequency
 - Low Noise Amplifier
 - Software:
 - Graphical programming model for modulation and encoding
 - GNURadio
 - Controller programming
 - Proper operating system (Raspberry Pi OS)
 - Linux OS

Fundamental Composition

- Computational Module
- SDR Module
- Software Signal Processing GUI
- Camera
- Power source
- Transmission Antenna
- Low Noise Amplifier

Conceptual Sketch

11 sddec24-01

Hardware Used

- HackRF Board
- Raspberry Pi 4
- Raspberry Pi Camera
- Antenna
- LaNA WB Amplifier

Software Used

- GNU Radio
 - Out of tree modules:
 - gr-dvbs2rx
 - Gr-ldpc
- Linux OS (Debian)
 - rpicam command line application
- SDRAngel

Detailed Design - Transmitting End

- File Source
 - Input data from Pi camera
- BB header
 - Adds header to initiate signal
- BB scrambler
 - Scramble for accurate timing recovery
- BCH Encoder
 - Convert data to Hierarchical Temporal Memory (HTM) format
- LDPC Encoder
 - Low density parity check Encode binary data for transmission

Detailed Design - Transmitting End

- Interleaver
 - Grouped bit error for Forward Error Correction (FEC)
- DVB-S2X Modulator
 - Modulate data to target frequency
- Physical Layer Framer
 - Tags data for later reconstruction
- FFT Filter
 - Band pass filter
- HackRF Sink
 - Interface to change SDR config
- Antenna
 - Transmit signal

15 sddec24-01

Detailed Antenna Design & Testing V1

- Half wavelength dipole vs quarter wavelength monopole
 - Quarter wavelength monopole has similar gain for our application and is more easily constructed.
- Copper plate used for PEC due to its high conductivity.
 - Drilled a hole at the top for feeding port.
 - Frequency is 1.2 GHz
 - ~2.46 inch monopole
- Identified there was a short on the PEC.

Detailed Antenna Design & Testing V2

- Initially assumed to have a 6 dB gain at 1.243 GHz.
- Simulations and measurements ran in MATLAB antenna toolbox.
- Designed with 8 AWG wire and RG-58 cable.
- Upon creation it was identified that there was a mistake.
 - The plot that was thought to be 6 dB of gain was actually the source match and was incorrect and was verified to be incorrect upon testing.

Testing - PLUTO

- Unit testing
 - Hardware and GNU Radio activation
- Interface and integration testing
 - Export video to GNU Radio
 - Activate PlutoSDR modules with GNU Radio
- System testing
 - Transmit a test file using PlutoSDR
- Acceptance criteria testing
 - Worked toward an "Over-the-air" video transmission
 - Integrating project into H.A.B.E.T. payload

Testing - HackRF

- Unit testing
 - Hardware and GNURadio activation
- Interface and integration testing
 - Export video to GNU Radio
 - Activate HackRF modules with GNU Radio
- System testing
 - Transmit a test file using HackRF
- Regression testing
 - Integrating HackRF SDR module with GNU Radio flowgraphs
- Acceptance criteria testing
 - Working toward an "Over-the-air" video transmission
 - Integrating project into H.A.B.E.T. payload

Prototype Implementation

- System integrated into H.A.B.E.T. payload for April 8, 2024 flight. (Solar Eclipse)
 - Due to miscommunication during launch preparation, the Heimdall system was active and tested during the flight.
- Weak signal showed more improvements needed before integration step.

Potential Risks and Mitigation

Task/Component	Risk	Mitigation							
Phase 1:									
Research hardware & software documentation	Inadequate understanding & underestimation of requirements	Allocate sufficient time for research and perform thorough testing for all components							
Phase 2:									
Determine necessary components signal must pass through	Miss critical components for signal modulation encoding, etc	Perform multiple over the line tests, starting simple & small files building up to videos. Consult GNURadio documentation.							
Design transmission antenna	Antenna design flaws affecting signal transmission or reception	Analyze antenna output with spectrum analyzer, consider deployment conditions, etc							
Equip H.A.B.E.T. test launches with Heimdall System	Hardware damage or malfunction during transportation or launch	Ensure at least one Heimdall member is on site for each launch and securely package Heimdall's system in payload							

Potential Risks and Mitigation

Task/Component	Risk	Mitigation
Revise and optimize design based on tests in lab and from H.A.B.E.T. launches	Insufficient time or resources for optimization efforts and frequency of H.A.B.E.T. test launches	Consistent team meetings to ensure continuous progress, and consulting with advisor about test results, and good communication with H.A.B.E.T.
Determine fine-tuned values for modulation, transmitting, etc	Suboptimal system performance due to improper parameter selection	Conduct testing and tuning, use mathematical models and spectrum analyzer for testing
Determine fine-tuned values for power consumption & analog components	Inaccurate power consumption estimates leading to weak or failed transmission	Conduct power measurements, consider worst-case scenarios, incorporate safety margins in power budgeting

Market Alternatives

Complete Hardware Implementation (vs. SDR hybrid)	Arduino Uno or BeagleBone Black (vs. Raspberry Pi)	MATLAB Simulink (vs. GNURadio)					
 Less flexible for potential changes to modulation scheme, frequency, etc. 	 Arduino is cheaper, but lacks necessary processing power. 	• Potentially better performance depending on implementation.					
 Less scalable and can't be adjusted for different use cases. 	 BeagleBone Black is a similar cost as the Pi, more powerful and versatile, but lacks 	 More expensive than GNURadio which is open source. 					
,	documentation and is more complex	 Inconsistent access to necessary libraries due to frequent licensing changes. 					

Resource/Cost Estimation

- Great Scott Gadgets' HackRF (2x@ ~\$350/each)
- Materials for helical antenna
 - Copper wire ~ \$15
 - 3D Printable structure PLA ~\$6.30
- Power Supply
 - Currently sourced: 8000mAh @ ~\$10
- Raspberry Pi 4B ~ \$45\
- Nooelec LaNA WB ~ \$60
 - Low noise amp for testing and preamp

Total Cost Estimation: ~\$836.30

Current Project Status

- SDR module transmits at target frequency.
- Loop antenna is not optimized, will be re-simulated and constructed for next semester.
- GNURadio transmission end, SDRAngel receiving end, using HackRF.
- A low noise pre-amp has arrived and power amplifier will be implemented

Looking Forward

- Integrate low-noise amplifier for stronger Rx signal
- Integrate power amplifier for Tx signal
- Optimize antenna for stronger transmission
- Re-testing modules with over-line testing
- Implement design and test during flight

Team Contributions

Brandon Beaver:

- Logistics & material sourcing of devices
- Design & test GNURadio transmission & receive flowgraphs
- Collaborative work with H.A.B.E.T.
 - Flight operations on Heimdall's Behalf
 - inter-group communications
- Aiding in Antenna design & testing
- Preliminary HackRF testing & SDRangel use
- Branden Buhler:
 - Design & implement monopole antenna
 - Simulated and constructed loop antenna.
 - Designed GNURadio flowgraph for transmission/reception.
 - Received signal on SDRangel.
- George Cleaver:
 - Design & build monopole antenna
 - Design transmitter & receiver flowgraph in GNU Radio
 - Set up HackRF on Raspberry Pi
 - Carried out unit & system testing
 - Pluto tests
 - HackRF tests

- Alec Sutton:
 - Assisted in design & testing of flowgraph
 - Set up Raspberry Pi for camera use & GNU Radio
 - Researched and acquired testing amplifier
 - Performed link budget research and calculations
 - Began research for power sources.
- Cullen White:
 - Set up Raspberry Pi for camera use & GNU Radio
 - Created team website
 - Took team members pictures for website

• Lex Somers:

- Designed & tested RX / TX GNURadio flowgraphs
- Installed & helped setup SDRAngel receiving end
- Research & tested out of tree GNURadio modules
 - Leandvb, gr-ldpc encoder & decoder, gr-dvbs2rx demodulator
- Integrated Pi cameras & GNURadio with rpicam application.
- Setup PlutoSDR & HackRF drivers on Raspberry Pis
- Setup & maintained team website

Thank You

Questions?

28 sddec24-01